Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.020
Filtrar
1.
ACS Infect Dis ; 10(4): 1137-1151, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606465

RESUMO

Antimicrobial resistance is a global threat to human health. Therefore, efforts have been made to develop new antibacterial agents that address this critical medical issue. Gepotidacin is a novel, bactericidal, first-in-class triazaacenaphthylene antibacterial in clinical development. Recently, phase III clinical trials for gepotidacin treatment of uncomplicated urinary tract infections caused by uropathogens, including Escherichia coli, were stopped for demonstrated efficacy. Because of the clinical promise of gepotidacin, it is important to understand how the compound interacts with its cellular targets, gyrase and topoisomerase IV, from E. coli. Consequently, we determined how gyrase and topoisomerase IV mutations in amino acid residues that are involved in gepotidacin interactions affect the susceptibility of E. coli cells to the compound and characterized the effects of gepotidacin on the activities of purified wild-type and mutant gyrase and topoisomerase IV. Gepotidacin displayed well-balanced dual-targeting of gyrase and topoisomerase IV in E. coli cells, which was reflected in a similar inhibition of the catalytic activities of these enzymes by the compound. Gepotidacin induced gyrase/topoisomerase IV-mediated single-stranded, but not double-stranded, DNA breaks. Mutations in GyrA and ParC amino acid residues that interact with gepotidacin altered the activity of the compound against the enzymes and, when present in both gyrase and topoisomerase IV, reduced the antibacterial activity of gepotidacin against this mutant strain. Our studies provide insights regarding the well-balanced dual-targeting of gyrase and topoisomerase IV by gepotidacin in E. coli.


Assuntos
Acenaftenos , DNA Topoisomerase IV , Escherichia coli , Compostos Heterocíclicos com 3 Anéis , Humanos , DNA Topoisomerase IV/genética , DNA Girase/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Aminoácidos/farmacologia
2.
ACS Biomater Sci Eng ; 10(4): 2442-2450, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38530812

RESUMO

With the progression of regenerative medicine and cell therapy, the importance of cryopreservation techniques for cultured cells continues to rise. Traditional cryoprotectants, such as dimethyl sulfoxide and glycerol, are effective in cryopreserving suspended cells, but they do not demonstrate sufficient efficacy for two-dimensional (2D)-cultured cells. In the past decade, small molecules and polymers have been studied as cryoprotectants. Some L-amino acids have been reported to be natural and biocompatible cryoprotectants. However, the cryoprotective effects of D-amino acids have not been investigated for such organized cells. In the present study, the cryoprotective effects of D- and L-amino acids and previously reported cryoprotectants were assessed using HepG2 cells cultured on a microplate without suspending the cells. d-Proline had the highest cryoprotective effect on 2D-cultured cells. The composition of the cell-freezing solution and freezing conditions were then optimized. The d-proline-containing cell-freezing solution also effectively worked for other cell lines. To minimize the amount of animal-derived components, fetal bovine serum in the cell freezing solution was substituted with bovine serum albumin and StemFit (a commercial supplement for stem cell induction). Further investigations on the mechanism of cryopreservation suggested that d-proline protected enzymes essential for cell survival from freeze-induced damage. In conclusion, an effective and xeno-free cell-freezing solution was produced using d-proline combined with dimethyl sulfoxide and StemFit for 2D-cultured cells.


Assuntos
Crioprotetores , Dimetil Sulfóxido , Animais , Humanos , Crioprotetores/farmacologia , Crioprotetores/química , Dimetil Sulfóxido/farmacologia , Aminoácidos/farmacologia , Criopreservação/métodos , Linhagem Celular , Prolina/farmacologia , Aminas
3.
Food Chem ; 447: 139005, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38507948

RESUMO

Hydrogen sulfide (H2S) is known to effectively inhibit the browning of fresh-cut apples, but the mechanism at a metabolic level remains unclear. Herein, non-targeted metabolomics was used to analyze metabolic changes in surface and internal tissues of fresh-cut apple after H2S treatment. The results showed that prenol lipids were the most up-accumulated differential metabolites in both surface and inner tissue of fresh-cut apple during browning process, which significantly down-accumulated by H2S treatment. H2S treatment reduced the consumption of amino acid in surface tissue. Regarding inner tissue, H2S activated defense response through accumulation of lysophospholipid signaling and induced the biosynthesis of phenolic compounds. We therefore propose that H2S inhibited the surface browning of fresh-cut apple by reducing the accumulation of prenol lipids, directly delaying amino acid consumption in surface tissue and indirectly regulating defense response in inner tissue, which provides fundamental insights into browning inhibition mechanisms by H2S.


Assuntos
Hemiterpenos , Sulfeto de Hidrogênio , Malus , Pentanóis , Malus/química , Aminoácidos/farmacologia , Lipídeos/farmacologia
4.
Pharmacol Rep ; 76(2): 348-367, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519733

RESUMO

BACKGROUND: The study aimed to assess the influence of a single valproate (VPA) administration on inhibitory and excitatory neurotransmitter concentrations in the brain structures involved in epileptogenesis in pentylenetetrazol (PTZ)-kindled rats. METHODS: Adult, male Wistar rats were kindled by repeated intraperitoneal (ip) injections of PTZ at a subconvulsive dose (30 mg/kg, three times a week). Due to the different times required to kindle the rats (18-22 injections of PTZ), a booster dose of PTZ was administrated 7 days after the last rats were kindled. Then rats were divided into two groups: acute administration of VPA (400 mg/kg) or saline given ip. The concentration of amino acids, kynurenic acid (KYNA), monoamines, and their metabolites in the prefrontal cortex, hippocampus, amygdala, and striatum was assessed by high-pressure liquid chromatography (HPLC). RESULTS: It was found that a single administration of VPA increased the gamma-aminobutyric acid (GABA), tryptophan (TRP), 5-hydroxyindoleacetic acid (5-HIAA), and KYNA concentrations and decreased aspartate (ASP) levels in PTZ-kindled rats in the prefrontal cortex, hippocampus, amygdala and striatum. CONCLUSIONS: Our results indicate that a single administration of VPA in the PTZ-kindled rats restored proper balance between excitatory (decreasing the level of ASP) and inhibitory neurotransmission (increased concentration GABA, KYNA) and affecting serotoninergic neurotransmission in the prefrontal cortex, hippocampus, amygdala, and striatum.


Assuntos
Aminoácidos , Excitação Neurológica , Ratos , Masculino , Animais , Aminoácidos/farmacologia , Pentilenotetrazol/farmacologia , Ácido Valproico/farmacologia , Ácido Cinurênico/metabolismo , Ratos Wistar , Encéfalo/metabolismo , Excitação Neurológica/metabolismo , Aminas/metabolismo , Ácido gama-Aminobutírico/metabolismo
5.
Eur J Med Chem ; 269: 116311, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38508118

RESUMO

Four series of imidazoles (15a-g, 20c, and 20d) and thiazoles (18a-g, 22a, and 22b) possessing various amino acids were synthesized and evaluated for activin receptor-like kinase 5 (ALK5) inhibitory activities in an enzymatic assay. Among them, compounds 15g and 18c showed the highest inhibitory activity against ALK5, with IC50 values of 0.017 and 0.025 µM, respectively. Compounds 15g and 18c efficiently inhibited extracellular matrix (ECM) deposition in TGF-ß-induced hepatic stellate cells (HSCs), and eventually suppressed HSC activation. Moreover, compound 15g showed a good pharmacokinetic (PK) profile with a favorable half-life (t1/2 = 9.14 h). The results indicated that these compounds exhibited activity targeting ALK5 and may have potential in the treatment of liver fibrosis; thus they are worthy of further study.


Assuntos
Aminoácidos , Tiazóis , Humanos , Tiazóis/farmacologia , Aminoácidos/farmacologia , Cirrose Hepática/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Imidazóis/farmacologia
6.
Clin Oral Investig ; 28(3): 190, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430333

RESUMO

OBJECTIVES: An adjunct in non-surgical periodontal therapy might be sodium hypochlorite (NaOCl)-based agents. The purpose of the present in vitro study was to get deeper knowledge on the influence of different parameters as time after mixing, pH, and chemical composition of an amino acid 0.475% NaOCl (AA-NaOCl) gel consisting of two components on its anti-biofilm activity. MATERIALS AND METHODS: Six-species biofilms were cultured for 5 days, before AA-NaOCl gel was applied. In the different series, the influence of the time after mixing of the two components before application, of the concentration of NaOCl in the gel mixture, of the pH of the gel mixture, and of an exchange of the amino acid component by hyaluronic acid (HA), was analyzed. RESULTS: Mixing time point experiments showed that the AA-NaOCl gel is capable of statistically significantly reducing colony-forming unit (cfu) counts up to 30 min after mixing, but only up to 20 min after mixing the reduction was more than 2 log10 cfu. The pH experiments indicate that a reduced pH results in a reduced activity of the NaOCl formulation. NaOCl concentrations in the formulation in the range from 0.475 to 0.2% provide adequate activity on biofilms. A HA/NaOCl gel was equally active against the biofilm as the AA-NaOCl gel. CONCLUSION: Mixing of the components should be made in a timeframe of 20 min before applications. An optimization of the composition of the NaOCl formulation might be possible and should be a topic in further in vitro studies. CLINICAL RELEVANCE: The AA-NaOCl gel formulation can be mixed up to 20 min before application. Further, the study indicates that the composition of the NaOCl gel formulation can be optimized.


Assuntos
Doenças Periodontais , Hipoclorito de Sódio , Humanos , Hipoclorito de Sódio/farmacologia , Hipoclorito de Sódio/química , Enterococcus faecalis , Doenças Periodontais/tratamento farmacológico , Bactérias , Aminoácidos/farmacologia
7.
Drug Dev Res ; 85(2): e22161, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38445811

RESUMO

In this study, a series of novel benzyloxybenzene substituted (S)-α-amino acid methyl esters and their amide derivatives were synthesized and evaluated for their inhibitory actions against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), monoamine oxidase A (MAO-A), and monoamine oxidase B (MAO-B). The synthetic strategy was based on starting from benzyl bromide (5) and 4-hydroxybenzaldehyde (6). The reaction of 5 and 6 in the presence of K2 CO3 gave benzyloxybenzaldehyde 7. Benzyloxybenzene substituted (S)-α-amino acid methyl esters 11, 12, 13, (±)-19, and (±)-20 were obtained from the reaction of  L-amino acid methyl esters with benzyloxybenzaldehyde (7) followed by in situ reduction with NaBH4 . The reaction of (S)-11, (S)-12, 13, (±)-19, and (±)-20 with excess ammonia gave amides (S)-14, (S)-15, 16, (±)-21, and (±)-22. The in vitro inhibitory activities of compounds against MAO-A, MAO-B, AChE, and BChE were investigated. Within the α-amino acid methyl ester series, 13 (21.32 ± 0.338 µM) showed selectivity by inhibiting the MAO-B better than MAO-A. 13 emerged as the most active member of this series, exhibiting a 12-fold selectivity for MAO-B. 14 (4.501 ± 0.295 µM) demonstrated a pronounced selectivity for MAO-A over MAO-B, with a selectivity ratio of 110-fold. In addition, it was determined that compound 15 (95.65 ± 3.09 µM) had high selectivity for BChE inhibition. 21 was demonstrated the most potent inhibition (18.36 ± 1.36 µM) against AChE.


Assuntos
Acetilcolinesterase , Butirilcolinesterase , Amidas/farmacologia , Aminoácidos/farmacologia , Ésteres , Monoaminoxidase
8.
Environ Toxicol Pharmacol ; 107: 104399, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403141

RESUMO

ß-N-methylamino-l-alanine (BMAA) has been shown to inhibit vesicular monoamine transporter 2 (VMAT2), thereby preventing the uptake of monoaminergic neurotransmitters into platelet dense granules and synaptic vesicles. The inhibition is hypothesized to be through direct association of BMAA with hydroxyl groupꟷcontaining amino acid residues in VMAT2. This study evaluated whether BMAA-induced inhibition of VMAT2 could be prevented directly by co-incubation of BMAA with amino acids, and if this protection was specific for BMAA inhibition of VMAT2. l-tyrosine, and to a lesser extent l-serine, was able to prevent BMAA-induced VMAT2 inhibition in a concentration-dependent manner, whereas neither l-threonine nor amino acids without side chain hydroxyl groups could reduce this inhibition. Reserpine-induced VMAT2 inhibition was unaffected by any of the amino acids. These data support the hypothesized interaction between BMAA and hydroxyl groupꟷcontaining amino acids and suggests that this interaction might be leveraged to protect against the toxicity of BMAA.


Assuntos
Diamino Aminoácidos , Aminoácidos , Aminoácidos/farmacologia , Proteínas Vesiculares de Transporte de Monoamina , Diamino Aminoácidos/toxicidade , Tirosina , Neurotoxinas/metabolismo
9.
J Agric Food Chem ; 72(9): 5073-5087, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377432

RESUMO

Tobacco black shank (TBS), caused by Phytophthora nicotianae, poses a significant threat to tobacco plants. Selenium (Se), recognized as a beneficial trace element for plant growth, exhibited inhibitory effects on P. nicotianae proliferation, disrupting the cell membrane integrity. This action reduced the energy supply and hindered hyphal transport through membrane proteins, ultimately inducing hyphal apoptosis. Application of 8 mg/L Se through leaf spraying resulted in a notable decrease in TBS incidence. Moreover, Se treatment preserved chloroplast structure, elevated chitinase activities, ß-1,3-GA, polyphenol oxidase, phenylalanine ammonia-lyase, and increased hormonal content. Furthermore, Se enhanced flavonoid and sugar alcohol metabolite levels while diminishing amino acid and organic acid content. This shift promoted amino acid degradation and flavonoid synthesis. These findings underscore the potential efficacy of Se in safeguarding tobacco and potentially other plants against P. nicotianae.


Assuntos
Phytophthora , Selênio , Selênio/farmacologia , Tabaco , Membrana Celular , Metabolismo Energético , Aminoácidos/farmacologia , Flavonoides/farmacologia , Doenças das Plantas
10.
Biol Lett ; 20(2): 20230519, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38351746

RESUMO

Learning where to find nutrients while at the same time avoiding toxic food is essential for survival of any animal. Using Drosophila melanogaster larvae as a study case, we investigate the role of gustatory sensory neurons expressing IR76b for associative learning of amino acids, the building blocks of proteins. We found surprising complexity in the neuronal underpinnings of sensing amino acids, and a functional division of sensory neurons. We found that the IR76b receptor is dispensable for amino acid learning, whereas the neurons expressing IR76b are specifically required for the rewarding but not the punishing effect of amino acids. This unexpected dissociation in neuronal processing of amino acids for different behavioural functions provides a study case for functional divisions of labour in gustatory systems.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Drosophila melanogaster/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/farmacologia , Neurônios/metabolismo , Recompensa , Paladar/fisiologia
11.
Biochem Biophys Res Commun ; 704: 149700, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38401304

RESUMO

Every year, the overprescription, misuse, and improper disposal of antibiotics have led to the rampant development of drug-resistant pathogens and, in turn, a significant increase in the number of patients who die of drug-resistant fungal infections. Recently, researchers have begun investigating the use of antimicrobial peptides (AMPs) as next-generation antifungal agents to inhibit the growth of drug-resistant fungi. The antifungal activity of alpha-helical peptides designed using the cationic amino acids containing lysine and arginine and the hydrophobic amino acids containing isoleucine and tryptophan were evaluated using 10 yeast and mold fungi. Among these peptides, WIK-14, which is composed of a 14-mer with tryptophan sequences at the amino terminus, showed the best antifungal activity via transient pore formation and ROS generation. In addition, the in vivo antifungal effects of WIK-14 were investigated in a mouse model infected with drug-resistant Candida albicans. The results demonstrate the potential of AMPs as antifungal agents.


Assuntos
Antifúngicos , Triptofano , Camundongos , Animais , Humanos , Antifúngicos/farmacologia , Antifúngicos/química , Triptofano/química , Lisina/química , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Aminoácidos/farmacologia , Candida albicans , Arginina/química , Testes de Sensibilidade Microbiana
12.
Bioorg Chem ; 145: 107212, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377819

RESUMO

As a vital hallmarker of cancer, the metabolic reprogramming has been shown to play a pivotal role in tumour occurrence, metastasis and drug resistance. Amongst a vast variety of signalling molecules and metabolic enzymes involved in the regulation of cancer metabolism, two key transcription factors Nrf1 and Nrf2 are required for redox signal transduction and metabolic homeostasis. However, the regulatory effects of Nrf1 and Nrf2 (both encoded by Nfe2l1 and Nfe2l2, respectively) on the metabolic reprogramming of hepatocellular carcinoma cells have been not well understood to date. Here, we found that the genetic deletion of Nrf1 and Nrf2 from HepG2 cells resulted in distinct metabolic reprogramming. Loss of Nrf1α led to enhanced glycolysis, reduced mitochondrial oxygen consumption, enhanced gluconeogenesis and activation of the pentose phosphate pathway in the hepatocellular carcinoma cells. By striking contrast, loss of Nrf2 attenuated the glycolysis and gluconeogenesis pathways, but with not any significant effects on the pentose phosphate pathway. Moreover, knockout of Nrf1α also caused fat deposition and increased amino acid synthesis and transport, especially serine synthesis, whilst Nrf2 deficiency did not cause fat deposition, but attenuated amino acid synthesis and transport. Further experiments revealed that such distinctive metabolic programming of between Nrf1α-/- and Nrf2-/- resulted from substantial activation of the PI3K-AKT-mTOR signalling pathway upon the loss of Nrf1, leading to increased expression of critical genes for the glucose uptake, glycolysis, the pentose phosphate pathway, and the de novo lipid synthesis, whereas deficiency of Nrf2 resulted in the opposite phenomenon by inhibiting the PI3K-AKT-mTOR pathway. Altogether, these provide a novel insight into the cancer metabolic reprogramming and guide the exploration of a new strategy for targeted cancer therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Hep G2 , Fosfatidilinositol 3-Quinases/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , 60645 , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Hepáticas/genética , Aminoácidos/farmacologia
13.
J Med Chem ; 67(5): 4131-4149, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38420875

RESUMO

In the pursuit of combating multidrug-resistant bacteria, antimicrobial peptides (AMPs) have emerged as promising agents; however, their application in clinical settings still presents challenges. Specifically, the exploration of crucial structural parameters that influence the antibacterial spectrum of AMPs and the subsequent development of tailored variants with either broad- or narrow-spectrum characteristics to address diverse clinical therapeutic needs has been overlooked. This study focused on investigating the effects of amino acid sites and hydrophobicity on the peptide's antibacterial spectrum through Ala scanning and fixed-point hydrophobic amino acid substitution techniques. The findings revealed that specific amino acid sites played a pivotal role in determining the antibacterial spectrum of AMPs and confirmed that broadening the spectrum could be achieved only by increasing hydrophobicity at certain positions. In conclusion, this research provided a theoretical basis for future precise regulation of an antimicrobial peptide's spectrum by emphasizing the intricate balance between amino acid sites and hydrophobicity.


Assuntos
Anti-Infecciosos , Peptídeos Catiônicos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Aminoácidos/farmacologia , Aminoácidos/química , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana
14.
Environ Toxicol ; 39(5): 2732-2740, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38251951

RESUMO

BACKGROUND: Cervical cancer, a life-threatening disease, is the seventh most commonly detected cancer among women throughout the world. The present study investigated the effect of tretinoin on cervical cancer growth and metastasis in vitro and in vivo in the mice model. MATERIALS AND METHODS: Cell Counting Kit-8, clonogenic survival, and transwell chamber assays were used for determination cells proliferation, colony formation, and invasiveness. Western blotting assay was used for assessment of protein expression whereas AutoDock Vina and Discovery studio software for in silico studies. RESULTS: Tretinoin treatment significantly (p < .05) reduced the proliferation of HT-3 and Caski cells in concentration-based manner. Incubation with tretinoin caused a significant decrease in clonogenic survival of HT-3 and Caski cells compared with the control cultures. The invasive potential of HT-3 cells was decreased to 18%, whereas that of Caski cells to 21% on treatment with 8 µM concentration of tretinoin. In HT-3 cells, tretinoin treatment led to a prominent reduction in p-focal adhesion kinase (FAK), matrix metalloproteinases (MMP)-2, and MMP-9 expression in HT-3 cells. Treatment of the cervical cancer mice model with tretinoin led to a prominent decrease in tumor growth. The metastasis of tumor in model cervical cancer mice group was effectively inhibited in spleen, intestines, and peritoneal cavity. In silico studies showed that tretinoin interacts with alanine, proline, isoleucine, and glycine amino acid residues of FAK protein to block its activation. The 2-dimensional diagram of interaction of tretinoin with FAK protein revealed that tretinoin binds to alanine and glycine amino acids through conventional hydrogen bonding. CONCLUSION: In summary, tretinoin suppressed the proliferation, colony formation, and invasiveness of cervical cancer cells in vitro. It decreased the expression of activated focal adhesion kinase, MMP-2, and MMP-9 in HT-3 cells in dose-dependent manner. In silico studies showed that tretinoin interacts with alanine and glycine amino acids through conventional hydrogen bonding. In vivo data demonstrated that treatment of the cervical cancer mice model with tretinoin led to a prominent decrease in tumor growth. Therefore, tretinoin can be developed as an effective therapeutic agent for cervical cancer treatment.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Animais , Camundongos , Neoplasias do Colo do Útero/metabolismo , Tretinoína/farmacologia , Tretinoína/uso terapêutico , Linhagem Celular Tumoral , Regulação para Baixo , Metaloproteinase 9 da Matriz/metabolismo , Proliferação de Células , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Alanina/metabolismo , Alanina/farmacologia , Alanina/uso terapêutico , Glicina/metabolismo , Glicina/farmacologia , Glicina/uso terapêutico , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Aminoácidos/uso terapêutico , Invasividade Neoplásica , Movimento Celular
15.
Chem Pharm Bull (Tokyo) ; 72(2): 149-154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296556

RESUMO

Antimicrobial peptides (AMPs) are promising therapeutic agents against bacteria. We have previously reported an amphipathic AMP Stripe composed of cationic L-Lys and hydrophobic L-Leu/L-Ala residues, and Stripe exhibited potent antimicrobial activity against Gram-positive and Gram-negative bacteria. Gramicidin A (GA), composed of repeating sequences of L- and D-amino acids, has a unique ß6.3-helix structure and exhibits broad antimicrobial activity. Inspired by the structural properties and antimicrobial activities of LD-alternating peptides such as GA, in this study, we designed Stripe derivatives with LD-alternating sequences. We found that simply alternating L- and D-amino acids in the Stripe sequence to give StripeLD caused a reduction in antimicrobial activity. In contrast, AltStripeLD, with cationic and hydrophobic amino acids rearranged to yield an amphipathic distribution when the peptide adopts a ß6.3-helix, displayed higher antimicrobial activity than AltStripe. These results suggest that alternating L-/D-cationic and L-/D-hydrophobic amino acids in accordance with the helical structure of an AMP may be a useful way to improve antimicrobial activity and develop new AMP drugs.


Assuntos
Aminoácidos , Antibacterianos , Aminoácidos/farmacologia , Antibacterianos/química , Peptídeos Antimicrobianos , Bactérias Gram-Negativas , Relação Estrutura-Atividade , Bactérias Gram-Positivas , Estrutura Secundária de Proteína , Gramicidina/química , Peptídeos/farmacologia , Testes de Sensibilidade Microbiana
16.
Bratisl Lek Listy ; 124(2): 84-91, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38219060

RESUMO

OBJECTIVES: Cisplatin is a widely used anticancer drug for the treatment of many solid cancers. DNA damage is thought to be the key mechanism of cisplatin's anticancer activity. However, cisplatin may also affect cellular metabolism. The aim of this study was to determine the effect of cisplatin on the types of ATP production (OXPHOS versus glycolysis) and their rate in prostate cancer cells and to determine the potentially protective effect of autophagy and amino acids during cisplatin treatment. We also wanted to investigate the potential synergy between the metabolic effects of cisplatin on ATP production and the inhibition of autophagy. METHODS: Cisplatin treatment can significantly affect the metabolism of cancer cells. Important metabolic pathways can be altered, leading to changes in energy production and nutrient utilization. Autophagy and amino acid pool modulations can serve as protective mechanisms significantly affecting tumor cell survival under metabolic stress caused by anticancer treatment. By enabling the recycling of amino acids, autophagy helps cancer cells maintain cellular homeostasis and overcome nutrient limitations. Thus, inhibition of autophagy could have a supportive effect on the metabolic effects of cisplatin. RESULTS: After cisplatin treatment, ATP production by way of OXPHOS was significantly decreased in 22Rv1 and PC-3 cells. On the other hand, ATP production by glycolysis was not significantly affected in 22Rv1 cells. DU145 cells with dysfunctional autophagy were the most sensitive to cisplatin treatment and showed the lowest ATP production. However, short-term autophagy inhibition (24h) by autophinib or SAR405 in 22Rv1 and PC-3 cells did not alter the effect of cisplatin on ATP production. Levels of some amino acids (arginine, methionine) significantly affected the fitness of cancer cells. CONCLUSION: Persistent defects of autophagy can affect the metabolic sensitivity of cancer cells due to interference with arginine metabolism. Amino acids contained in the culture medium had an impact on the overall effect of cisplatin (Fig. 3, Ref. 38).


Assuntos
Cisplatino , Neoplasias da Próstata , Pirazóis , Piridinas , Pirimidinas , Pirimidinonas , Masculino , Humanos , Cisplatino/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Autofagia , Linhagem Celular Tumoral , Aminoácidos/farmacologia , Aminoácidos/metabolismo , Trifosfato de Adenosina/farmacologia , Arginina
17.
Antiviral Res ; 222: 105799, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38190973

RESUMO

Adenovirus infections of immunocompromised humans are a significant source of morbidity and mortality. Presently, there is no drug specifically approved for the treatment of adenovirus infections by the FDA. The state-of-the-art treatment of such infections is the off-label use of cidofovir, an acyclic nucleotide phosphonate. While cidofovir inhibits adenovirus replication, it has dose-limiting kidney toxicity. There is an apparent need for a better compound to treat adenovirus infections. To this end, we have been developing acyclic nucleotide phosphonate prodrugs that utilize an amino acid scaffold equipped with a lipophilic modifier. Here, we compare the antiviral potential of two prodrugs of HPMPA that differ only in the amino acid-based promoiety: USC-087, based on an N-hexadecyl tyrosinamide, and USC-093, based on an N-hexadecyl serinamide. Oral administration of both compounds was very efficacious against disseminated HAdV-C6 infection in immunosuppressed Syrian hamsters, suppressing virus replication and mitigating pathology even when treatment was withheld until 4 days after challenge. We saw only marginal efficacy after respiratory infection of hamsters, which may reflect suboptimal distribution to the lung. Importantly, neither compound induced intestinal toxicity, which was observed as the major adverse effect in clinical trials of brincidofovir, a prodrug of cidofovir which also contains a C-16 modifier. Notably, we found that there was a significant difference in the nephrotoxicity of the two compounds: USC-087 caused significant kidney toxicity while USC-093 did not, at effective doses. These findings will be valuable guidepoints in the future evolution of this new class of potential prodrugs to treat adenovirus infections.


Assuntos
Adenina/análogos & derivados , Infecções por Adenoviridae , Infecções por Adenovirus Humanos , Organofosfonatos , Pró-Fármacos , Tirosina/análogos & derivados , Cricetinae , Animais , Humanos , Infecções por Adenovirus Humanos/tratamento farmacológico , Cidofovir/farmacologia , Cidofovir/uso terapêutico , Mesocricetus , Antivirais/uso terapêutico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Adenoviridae , Replicação Viral , Organofosfonatos/farmacologia , Organofosfonatos/uso terapêutico , Infecções por Adenoviridae/tratamento farmacológico , Citosina/farmacologia , Citosina/uso terapêutico , Aminoácidos/farmacologia , Nucleotídeos/uso terapêutico
18.
J Med Chem ; 67(2): 1370-1383, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38169430

RESUMO

In view of the increased prevalence of antimicrobial resistance among human pathogens, antibiotics against multidrug-resistant (MDR) bacteria are in urgent demand. In particular, the rapidly emerging resistance to last-resort antibiotic colistin, used for severe Gram-negative MDR infections, is critical. Here, a series of polymyxins containing unnatural amino acids were explored, and some analogues exhibited excellent antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. Hydrophobicity of the compounds within this series (as measured by retention in reversed-phase analytical HPLC) exhibited a discernible correlation with their antimicrobial activity. This trend was particularly pronounced for colistin-resistant pathogens. The most active compounds demonstrated competitive activity against a panel of Gram-negative pathogens, while exhibiting low in vitro cytotoxicity. Importantly, most of these hits also retained (or even had increased) potency against colistin-susceptible strains. These findings infer that fine-tuning hydrophobicity may enable the design of polymyxin analogues with favorable activity profiles.


Assuntos
Colistina , Polimixinas , Humanos , Polimixinas/farmacologia , Colistina/farmacologia , Polimixina B , Aminoácidos/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana
19.
Eur J Med Chem ; 266: 116157, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38245976

RESUMO

The metabotropic glutamate (Glu) receptors (mGluRs) are G-protein coupled receptors, which play a central role in modulating excitatory neurotransmission in the central nervous system (CNS). Thus, the development of tool compounds thereto, continues to interest the scientific community. In this study, we report the design and synthesis of new conformationally restricted 2-aminoadipic acid (2AA) 2-4, and glutamic acid 5, 6 analogs, which share the cyclopropane ring as the restrictor. The analogs were characterized at rat mGlu1-8 in an IP-One functional assay. While the 2AA analogs 3a, 4a and CCG-I analog 5a were shown to be selective mGlu2 agonists with low micromolar potencies, CCG-II analog 5b was shown to be a potent full agonist at mGlu2 (EC50 = 82 nM) with ∼15-fold selectivity over mGlu3, >25-fold selectivity over group III, and >60-fold selectivity over group I subtypes. An in silico study was performed to address this significant change (>3500 fold) in potency upon introduction of this methyl group (L-CCG-II vs 5b).


Assuntos
Aminoácidos , Receptores de Glutamato Metabotrópico , Ratos , Animais , Aminoácidos/farmacologia , Glicina , Receptores de Glutamato Metabotrópico/agonistas , Ácido Glutâmico/farmacologia , Sistema Nervoso Central
20.
Blood Adv ; 8(1): 56-69, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-37906522

RESUMO

ABSTRACT: Cysteine is a nonessential amino acid required for protein synthesis, the generation of the antioxidant glutathione, and for synthesizing the nonproteinogenic amino acid taurine. Here, we highlight the broad sensitivity of leukemic stem and progenitor cells to cysteine depletion. By CRISPR/CRISPR-associated protein 9-mediated knockout of cystathionine-γ-lyase, the cystathionine-to-cysteine converting enzyme, and by metabolite supplementation studies upstream of cysteine, we functionally prove that cysteine is not synthesized from methionine in acute myeloid leukemia (AML) cells. Therefore, although perhaps nutritionally nonessential, cysteine must be imported for survival of these specific cell types. Depletion of cyst(e)ine increased reactive oxygen species (ROS) levels, and cell death was induced predominantly as a consequence of glutathione deprivation. nicotinamide adenine dinucleotide phosphate hydrogen oxidase inhibition strongly rescued viability after cysteine depletion, highlighting this as an important source of ROS in AML. ROS-induced cell death was mediated via ferroptosis, and inhibition of glutathione peroxidase 4 (GPX4), which functions in reducing lipid peroxides, was also highly toxic. We therefore propose that GPX4 is likely key in mediating the antioxidant activity of glutathione. In line, inhibition of the ROS scavenger thioredoxin reductase with auranofin also impaired cell viability, whereby we find that oxidative phosphorylation-driven AML subtypes, in particular, are highly dependent on thioredoxin-mediated protection against ferroptosis. Although inhibition of the cystine-glutamine antiporter by sulfasalazine was ineffective as a monotherapy, its combination with L-buthionine-sulfoximine (BSO) further improved AML ferroptosis induction. We propose the combination of either sulfasalazine or antioxidant machinery inhibitors along with ROS inducers such as BSO or chemotherapy for further preclinical testing.


Assuntos
Ferroptose , Leucemia Mieloide Aguda , Humanos , Cisteína/metabolismo , Cisteína/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes , Cistationina/farmacologia , Sulfassalazina/farmacologia , Aminoácidos/farmacologia , Glutationa/metabolismo , Glutationa/farmacologia , Butionina Sulfoximina/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...